

On gradient Ricci solitons with symmetry

Eduardo García-Río

Joint work with

M. Brozos-Vázquez, M. Fernández-López, P. Gilkey and S. Gavino-Fernández

ICM 2014 Satellite Conference on Geometric Analysis

Notation

Ricci solitons:

(M,g) pseudo-Riemannian manifold and X a vector field on M satisfying

$$\mathcal{L}_X g + Ric = \lambda g$$

where Ric is the Ricci tensor and $\lambda \in \mathbb{R}$.

• Motivation comes from the study of the Ricci flow

$$t \to g(t), \qquad \frac{d}{dt}g(t) = -2Ric(t)$$

(Hamilton 1982)

For any prescribed metric g(0) on a compact manifold M, there exists a unique solution on a maximal interval [0,T), where $0 < T \le \infty$.

- \rightarrow If the initial metric g_0 is *Einstein* with $Ric_0 = \lambda g_0$, then $g(t) = (1 2\lambda t)g_0$
- → Ricci solitons are self-similar solutions of the Ricci flow

$$g(t) = (1 - 2\lambda t)\varphi_t^* g,$$

where φ_t is the one-parameter group of diffeomorphisms associated to $\frac{1}{1-2\lambda t}X$.

A Ricci soliton is called *expanding*, *steady* or *shrinking* depending on whether $\lambda = \frac{1}{n} (2 \text{div} X + Sc)$ satisfies $\lambda < 0$, $\lambda = 0$ or $\lambda > 0$.

Notation

Gradient Ricci solitons:

(M,g) pseudo-Riemannian manifold and $f:M\to\mathbb{R}$ smooth function satisfying

$$Ric + Hess_f = \lambda g$$

where Ric is the Ricci tensor and $\lambda \in \mathbb{R}$.

(Perelman 2002)

Compact Ricci solitons are gradient.

(Hamilton 1995; Ivey 1993)

Expanding and steady compact Ricci solitons are trivial (i.e., Einstein)

(Hamilton 1988; Ivey 1993)

Two and three-dimensional compact Ricci solitons are trivial.

(Koiso 1990; Cao 1991; Wang, Zhu 2004)

- Examples exist in $\mathbb{C}P^2 \sharp k \overline{\mathbb{C}P^2}$, (k = 1, 2).
- \rightarrow The gradient Ricci soliton equation relates the geometry of (M,g) via its Ricci curvature with that of the level sets of the potential function through its second fundamental form.
- \rightarrow Nontrivial pseudo-Riemannian gradient Ricci solitons may exist with $\|\nabla f\|=0$.

Notation

Gaussian soliton:

For any $\lambda \neq 0$, $f(x) = \frac{\lambda}{2} ||x||^2$ defines a gradient Ricci soliton on \mathbb{R}^n_{ν} .

The Gaussian soliton is expanding or shrinking depending on the value of λ .

Rigid solitons:

A gradient Ricci soliton is said to be *rigid* if it is isometric to a quotient of $N \times \mathbb{R}^k$, where N is Einstein and $f = \frac{\lambda}{2} ||x||^2$ on the Euclidean factor.

(Petersen, Wylie; 2009)

- Homogeneous Riemannian gradient Ricci solitons are rigid.
- Complete locally conformally flat Riemannian shrinking GRS are rigid.
 (Batat, Brozos-Vázquez, G.-R., Gavino-Fernández; 2011)
- Lorentzian Cahen-Wallach symmetric spaces are non-rigid steady gradient Ricci solitons.

Algebraic solitons: (Lauret)

Expanding solitons on nilpotent and solvable Lie groups.

(Onda; 2011)

Algebraic Ricci solitons on Lorentzian Lie groups

(Brozos-Vázquez, Calvaruso, G.-R., Gavino-Fernández; 2011)

- Left-invariant Ricci solitons on three-dimensional Lorentzian Lie groups.
 - → The Ricci operator has a single eigenvalue.

Plan of the talk

1. Locally homogeneous Lorentzian gradient Ricci solitons

- Non-steady locally homogeneous gradient Ricci solitons
- Steady locally homogeneous gradient Ricci solitons

2. Riemannian Ricci solitons of constant scalar curvature

- Curvature-homogeneous gradient Ricci solitons
- Four-dimensional Kähler gradient Ricci solitons

• Let (M,g) be a gradient Ricci soliton with constant scalar curvature. If X is a Killing vector field, then $\operatorname{grad} X(f)$ is a parallel vector field.

Moreover, if $\lambda \neq 0$, then grad X(f) = 0 if and only if X(f) = 0.

$$0 = \nabla f(X(f)) = \nabla_{\nabla f} g(\nabla f, X) = g(\nabla_{\nabla f} \nabla f, X) + g(\nabla f, \nabla_{\nabla f} X)$$
$$= \operatorname{Hes}_f(\nabla f, X) + \frac{1}{2} (\mathcal{L}_X g)(\nabla f, \nabla f)$$
$$= -\operatorname{Ric}(\nabla f, X) + \lambda g(\nabla f, X) = \lambda X(f),$$

- \rightarrow If grad X(f) is timelike/spacelike, then (M,g) splits a one-dimensional factor.
- \rightarrow If grad X(f) is null, then (M,g) is a Walker manifold.
- Let (M,g) be a locally homogeneous non-steady Lorentzian gradient Ricci soliton. Then it splits as a product $M=N\times\mathbb{R}^k$ for some $k\geq 0$ where either
 - (1) (N, g_N) is a Lorentzian Einstein manifold and the soliton is rigid, or
 - (2) (N, g_N) is a Lorentzian strictly Walker manifold.

Theorem (Brozos-Vázquez, G.-R., Gavino-Fernández, Gilkey; 2014) Let (M,g) be a locally homogeneous Lorentzian non-steady gradient Ricci soliton. Then one of the following holds:

- (1) (M,g) is irreducible and Einstein.
- (2) (M,g) is rigid, this is, there is a local splitting $(M,g)=(N\times\mathbb{R}^k_\nu,g_N+g_e)$ where (N,g_N) is Einstein with Einstein constant λ and (\mathbb{R}^k_ν,g_e) is pseudo-Euclidean space, $\nu=0,1$.
- (3) (M,g) locally splits as

$$(M,g) = (N_0 \times N_1 \times \mathbb{R}^k, g_0 + g_1 + g_e)$$

where (N_0, g_0) is an indecomposable locally homogeneous Lorentzian gradient Ricci soliton, (N_1, g_1) is a Riemannian Einstein manifold with Einstein constant λ and (\mathbb{R}^k, g_e) is Euclidean space.

- \rightarrow If dim $N_0 \le 3$, then the soliton is rigid.
- \rightarrow If ker Ric = 2, then the soliton is rigid.
- ✓ Locally homogeneous Lorentzian non-steady GRS of dimension \leq 4 are rigid.
- ✓ Locally homogeneous Lorentzian non-steady GRS of dimension are rigid if and only if the Weyl tensor is harmonic.

• Some consequences of the gradient Ricci soliton equation

$$\operatorname{Hes}_f + \operatorname{Ric} = \lambda g$$

- \rightarrow $\nabla Sc = 2 \operatorname{Ric}(\nabla f)$, and hence, $\operatorname{Ric}(\nabla f, \cdot) = 0$ if Sc is constant.
- \rightarrow In the steady case $(\lambda = 0)$, hes_f $(\nabla f) = 0$, and hence ∇f is a geodesic vector field if Sc is constant.
- \rightarrow Bochner identity $\frac{1}{2}\Delta g(\nabla f, \nabla f) = \|\operatorname{hes}_f\|^2 + \operatorname{Ric}(\nabla f, \nabla f) + g(\nabla \Delta f, \nabla f)$ shows that $\lambda(n\lambda - Sc) = \|\operatorname{hes}_f\|^2$ if Sc is constant.
- ightarrow In the steady case ($\lambda=0$), both hes_f and Ric are isotropic if Sc is constant.
- \to $Sc + \|\nabla f\|^2 2\lambda f = \text{const.}$, and thus in the steady case $(\lambda = 0)$, f is a solution of the *Eikonal equation* $\|\nabla f\|^2 = \mu$, if Sc is constant.

We consider separately the cases $\mu < 0$, $\mu = 0$ and $\mu > 0$.

Theorem (Brozos-Vázquez, G.-R., Gavino-Fernández, Gilkey; 2014) Let (M,g) be a locally homogeneous steady gradient Ricci soliton such that $\|\nabla f\|^2 = \mu < 0$. Then (M,g) splits locally as a product $\mathbb{R} \times N$, where N is flat and f is the projection on \mathbb{R} .

- \rightarrow Since $\operatorname{hes}_f(\nabla f) = 0$, one may restrict hes_f to ∇f^{\perp} , which inherits a positive definite metric.
- → Bochner identity

$$\frac{1}{2}\Delta g(\nabla f, \nabla f) = \|\operatorname{hes}_f\|^2 + \operatorname{Ric}(\nabla f, \nabla f) + g(\nabla \Delta f, \nabla f)$$

and $\Delta f = -Sc$ shows that $\| \operatorname{hes}_f \|^2 = 0$ and hence $\operatorname{hes}_f = 0$.

- \to ∇f is a parallel timelike vector field and thus (M,g) splits locally as $\mathbb{R} \times N$.
- \rightarrow (N, g_N) is locally homogeneous Ricci flat Riemannian manifold.

(Spiro, 1993)

Riemannian Ricci flat locally homogeneous manifolds are flat.

• Let (M,g) be a homogeneous steady gradient Ricci soliton with $\|\nabla f\|^2 = 0$. Then the Ricci operator is two-step or three-step nilpotent.

Moreover, if the Ricci operator is two-sep nilpotent, then there is a null parallel vector field on (M, g).

(Calvaruso; 2007)

A three-dimensional (complete and simply connected) homogeneous space is either symmetric or a Lie group.

- Let (M,g) be a three-dimensional homogeneous steady gradient Ricci soliton with $\|\nabla f\|^2 = 0$. Then (M,g) admits a null parallel vector field.
 - → Classification of three-dimensional homogeneous Walker manifolds

Walker manifold: a Lorentzian manifold admitting a parallel null vector field. There exist local coordinates (x, y, \tilde{x}) where the metric is given by

$$g(\partial_x, \partial_x) = -2\phi(x, y), \qquad g(\partial_x, \partial_{\tilde{x}}) = g(\partial_y, \partial_y) = 1.$$

(G.-R., Gilkey, Nikčević; 2014)

Let \mathcal{N}_b be defined by $\phi(x,y) = b^{-2}e^{by}$, for $b \neq 0$.

Let \mathcal{P}_c be defined by $\phi(x,y) = \frac{1}{2}y^2\alpha(x)$, where $\alpha_x = c\alpha^{3/2}$, $\alpha > 0$.

Let $\mathcal{CW}_{\varepsilon}$ be defined by $\phi(x,y) = \varepsilon y^2$.

- Let (M,g) be a three-dimensional homogeneous steady gradient Ricci soliton with $\|\nabla f\|^2 > 0$. Then (M,g) admits a null parallel vector field.
- \rightarrow If dim(ker(Ric)) = 1, then $X = \nabla f$ is left-invariant and Ric² = 0.

(Brozos-Vázquez, Calvaruso, G.-R., Gavino-Fernández; 2011)

A three-dimensional Lorentzian Lie group admits a left-invariant Ricci soliton if and only if the Ricci operator has a single eigenvalue.

 \rightarrow If dim(ker(Ric)) = 2, then Ric is two-step nilpotent or diagonalizable.

If Ric is diagonalizable, then Ric = diag[0, 0, Sc] and isotropic. Then Sc = 0 and Ric = 0.

(Calviño-Louzao, G.-R., Vázquez-Abal, Vázquez-Lorenzo; 2012)

A three-dimensional Lorentzian homogeneous manifold is Walker if and only if $Ric^2 = 0$.

→ Classification of three-dimensional homogeneous Walker manifolds

Theorem (Brozos-Vázquez, G.-R., Gavino-Fernández, Gilkey; 2014) Let (M,g) be a three-dimensional locally homogeneous Lorentz gradient Ricci soliton. Then one of the following holds

- (1) The soliton is trivial
- (2) The soliton is rigid
- (3) The gradient Ricci soliton is steady and
 - (3.1) (M, g) is locally isometric to $\mathcal{CW}_{\varepsilon}$,
 - (3.2) (M,g) is locally isometric to \mathcal{P}_c ,
 - (3.3) (M, g) is locally isometric to \mathcal{N}_b .

Walker manifold: a Lorentzian manifold admitting a parallel null vector field. There exist local coordinates (x, y, \tilde{x}) where the metric is given by

$$g(\partial_x, \partial_x) = -2\phi(x, y), \qquad g(\partial_x, \partial_{\tilde{x}}) = g(\partial_y, \partial_y) = 1.$$

Let \mathcal{N}_b be defined by $\phi(x,y) = b^{-2}e^{by}$, for $b \neq 0$.

Let \mathcal{P}_c be defined by $\phi(x,y) = \frac{1}{2}y^2\alpha(x)$, where $\alpha_x = c\alpha^{3/2}$, $\alpha > 0$.

Let $\mathcal{CW}_{\varepsilon}$ be defined by $\phi(x,y) = \varepsilon y^2$.

Theorem (Brozos-Vázquez, G.-R., Gavino-Fernández, Gilkey; 2014) Let (M,g) be a three-dimensional locally homogeneous Lorentz gradient Ricci soliton. Then one of the following holds

- (1) The soliton is trivial
- (2) The soliton is rigid
- (3) The gradient Ricci soliton is steady and
 - (3.1) (M,q) is locally isometric to $\mathcal{CW}_{\varepsilon_1}$
 - (3.2) (M,g) is locally isometric to \mathcal{P}_c ,
 - (3.3) (M, g) is locally isometric to \mathcal{N}_b .

- \rightarrow GRS are geodesic vector fields and thus complete in $\mathcal{CW}_{\varepsilon}$ and \mathcal{N}_{b} .
- \to GRS in $\mathcal{CW}_{\varepsilon}$ and \mathcal{P}_{c} are isotropic, while those in \mathcal{N}_{b} are spacelike.
- o $\mathcal{CW}_{arepsilon}$ and \mathcal{P}_c admit expanding, steady and shrinking RS, while \mathcal{N}_b admits only steady RS.

Let (M,g) be a Lorentzian *locally symmetric* space.

- (1) If (M,g) is irreducible, then (M,g) has constant sectional curvature.
- (2) If (M,g) is indecomposable but reducible, then (M,g) is a Cahen-Wallach symmetric space.

 (N, g_N) is a Cahen-Wallach symmetric space if there are coordinates (t, y, x_1, \ldots, x_n) so:

$$g_N = 2 dt dy + \left(\sum_{i=1}^n \kappa_i x_i^2\right) dy^2 + \sum_{i=1}^n dx_i^2$$
 for $0 \neq \kappa_i \in \mathbb{R}$.

Assume that all $\kappa_i \neq 0$ to ensure that (N, g_N) is indecomposable.

Theorem (Brozos-Vázquez, G.-R., Gavino-Fernández, Gilkey; 2014) Let (M,g) be a locally symmetric Lorentzian gradient Ricci soliton. Then (M,g) splits locally as a product $M=N\times\mathbb{R}^k$ where

- (1) if (M,g) is not steady, then (N,g_N) is Einstein and the soliton is rigid,
- (2) if (M,g) is steady, then (N,g_N) is locally isometric to a Cahen-Wallach symmetric space.

A gradient Ricci soliton is said to be *rigid* if it is isometric to a quotient of $N \times \mathbb{R}^k$, where N is Einstein and $f = \frac{\lambda}{2} ||x||^2$ on the Euclidean factor.

Theorem (Petersen, Wylie; 2009)

Let (M,g) be a complete shrinking or expaning gradient Ricci soliton. If any of the following conditions holds, then the Ricci soliton is rigid,

- (1) Sc is constant and the radial curvature $K(\cdot, \nabla f)$ is non-negative or non-positive.
- (2) Sc is constant and $0 \le Ric \le \lambda g$ or $\lambda g \le Ric \le 0$.
- (3) Ric > 0 or Ric < 0 and the radial curvature $K(\cdot, \nabla f)$ vanishes.
- → Bounded Ricci curvature implies Einstein in the Lorentzian setting.
- → Lorentzian Cahen-Wallach symmetric spaces are non-rigid steady gradient Ricci solitons which have zero scalar curvature and are radially flat.

Theorem (Fernández-López, G.-R.; 2011, Munteanu, Sesum; 2011) A complete gradient shrinking Ricci soliton is rigid if and only if its Weyl tensor is harmonic.

✓ All known examples of complete GRS with constant scalar curvature are rigid.

Theorem (Petersen, Wylie; 2009)

Let (M,g) be a GRS with constant scalar curvature, then,

- (1) If $\lambda = 0$, then Sc = 0 and (M, g) is Ricci flat
- (2) If $\lambda > 0$, then $Sc \in [0, n\lambda]$.
- (3) If $\lambda < 0$, then $Sc \in [n\lambda, 0]$.

Moreover the extreme values are achieved only in the Einstein case.

- The potential function f is isoparametric in the constant scalar curvature case, i.e. $\|\nabla f\|^2 = b(f) = 2\lambda f$, $\Delta f = a(f) = n\lambda Sc$.
- \rightarrow Scalar curvature depends on the dimension of the focal varieties M_{\pm} .

$$Hess_f = 0 \text{ on } TM_{\pm}$$
 $Hess_f = \frac{1}{2}b'(f) \text{ on } TM_{\pm}^{\perp}.$

→ Focal varieties are non-empty submanifolds.

Theorem (Fernández-López, G.-R.; 2014)

Let (M,g) be a non-steady complete gradient Ricci soliton with constant scalar curvature. Then the scalar curvature $Sc = k\lambda$, where $k = 1, \ldots, n-1$.

The value k = n - 1 is achieved only in the rigid case.

No complete gradient shrinking soliton exist with scalar curvature $Sc = \lambda$.

Theorem (Petersen, Wylie; 2009) Any homogeneous gradient Ricci soliton is rigid.

(M,g) is said to be k-curvature homogeneous if for each pair of points $p,q \in M$, there is a linear isometry $\Phi_{pq}: T_pM \to T_qM$ such that

$$\Phi_{pq}^*R(q) = R(p), \quad \Phi_{pq}\nabla R(q) = \nabla R(p), \quad \Phi_{pq}\nabla^k R(q) = \nabla^k R(p).$$

Any locally homogeneous manifold is k-curvature homogeneous for all k and the converse holds true if k is sufficiently large.

Theorem (Fernández-López, G.-R.; 2014) Let (M,g) be a 0-curvature homogeneous complete gradient Ricci soliton. Then it is rigid.

Theorem (Fernández-López, G.-R.; 2014) Let (M,g) be a complete GRS with constant scalar curvature. Then it is rigid if and only if the Ricci operator has constant rank.

 \to Let R_1,\dots,R_k be nonzero Ricci curvatures. Since the Ricci operator has constant rank, one measures

$$\sum_{i=1}^{n} (R_i - \lambda)^2 = \|Ric\|^2 - 2\lambda Sc + k\lambda^2 = 0 \quad \text{since } \Delta_f Sc = \lambda Sc - \|Ric\|^2.$$

Theorem (Fernández-López, G.-R.; 2014)

Let (M,g) be a non-steady complete gradient Ricci soliton with constant scalar curvature. Then (M,g) is rigid, provided that the Ricci operator has at most three distinct Ricci curvatures.

- ✓ Complete gradient Ricci solitons with constant scalar curvature are rigid in dimension 3.
- ✓ Complete Kähler gradient Ricci solitons with constant scalar curvature are rigid in dimension ≤ 6 .
- ✓ Complete gradient Ricci solitons are rigid if and only if the traces of Ric, Ric^2 , Ric^3 and Ric^4 are constant.

$$\sum_{i} R_{i}^{2} (\lambda - R_{i})^{2} = \sum_{i} R_{i}^{4} - 2\lambda \sum_{i} R_{i}^{3} + \lambda^{2} \sum_{i} R_{i}^{2}$$

Thus $R_i \in \{0, \lambda\}$, which shows that the Ricci curvatures are constant and the soliton is rigid.

On gradient Ricci solitons with symmetry

Eduardo García-Río

Joint work with

M. Brozos-Vázquez, M. Fernández-López, P. Gilkey and S. Gavino-Fernández

ICM 2014 Satellite Conference on Geometric Analysis